The Number of Centered Lozenge Tilings of a Symmetric Hexagon

نویسندگان

  • Mihai Ciucu
  • Christian Krattenthaler
چکیده

Abstract. Propp conjectured [15] that the number of lozenge tilings of a semiregular hexagon of sides 2n − 1, 2n − 1 and 2n which contain the central unit rhombus is precisely one third of the total number of lozenge tilings. Motivated by this, we consider the more general situation of a semiregular hexagon of sides a, a and b. We prove explicit formulas for the number of lozenge tilings of these hexagons containing the central unit rhombus, and obtain Propp’s conjecture as a corollary of our results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dual of MacMahon’s theorem on plane partitions

A classical theorem of MacMahon states that the number of lozenge tilings of any centrally symmetric hexagon drawn on the triangular lattice is given by a beautifully simple product formula. In this paper, we present a counterpart of this formula, corresponding to the exterior of a concave hexagon obtained by turning 120° after drawing each side (MacMahon’s hexagon is obtained by turning 60° af...

متن کامل

Enumeration of Tilings of Quartered Aztec Rectangles

We generalize a theorem of W. Jockusch and J. Propp on quartered Aztec diamonds by enumerating the tilings of quartered Aztec rectangles. We use subgraph replacement method to transform the dual graph of a quartered Aztec rectangle to the dual graph of a quartered lozenge hexagon, and then use Lindström-GesselViennot methodology to find the number of tilings of a quartered lozenge hexagon.

متن کامل

Enumeration of tilings of a hexagon with a maximal staircase and a unit triangle removed

In 1988, Proctor presented a result on plane partitions which implied a formula for the number of lozenge tilings of a hexagon with side-lengths a, b, c, a, b, c after removing a “maximal staircase.” More recently, Ciucu proved a weighted version of Proctor’s result. Here we present weighted and unweighted formulas for a similar region which has an additional unit triangle removed. We use Kuo’s...

متن کامل

Enumeration of Lozenge Tilings of Hexagons with a Central Triangular Hole

We deal with the unweighted and weighted enumerations of lozenge tilings of a hexagon with side lengths a; b + m; c; a + m; b; c + m, where an equilateral triangle of side length m has been removed from the center. We give closed formulas for the plain enumeration and for a certain (?1)-enumeration of these lozenge tilings. In the case that a = b = c, we also provide closed formulas for certain...

متن کامل

Enumeration of Lozenge Tilings of Punctured Hexagons

We present a combinatorial solution to the problem of determining the number of lozenge tilings of a hexagon with sides a, b + 1, b, a + 1, b, b + 1, with the central unit triangle removed. For a = b, this settles an open problem posed by Propp 7]. Let a, b, c be positive integers, and denote by H the hexagon whose side-lengths are (in cyclic order) a, b, c, a, b, c and all whose angles have 12...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 86  شماره 

صفحات  -

تاریخ انتشار 1999